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It's very clear that in order to make progress in understanding some of the most challenging
and important things about intelligence, studying the best example we have of an intelligent
system is a way to do that. Often, people who argue against that make the analogy that if
we were trying to understand how to build jet airplanes, then starting with birds is not
necessarily a good way to do that.                                 

That analogy is pretty telling. The thing that's critical to both making jet airplanes work and
making birds fly is the structure of the underlying problem that they're solving. That problem
is keeping an object airborne, and the structure of that problem is constrained by
aerodynamics. By studying how birds fly and the structure of their wings, you can learn



something important about aerodynamics. And what you learn about aerodynamics is equally
relevant to then being able to make jet engines.                                 

The kind of work that I do is focused on trying to identify the equivalent of aerodynamics
for cognition. What are the real abstract mathematical principles that constrain intelligence?
What can we learn about those principles by studying human beings? 

TOM GRIFFITHS is a professor of psychology and cognitive science and director of the
Computational Cognitive Science Lab and the Institute of Cognitive and Brain Sciences at
the University of California, Berkeley. He is co-author (with Brian Christian) of Algorithms
to Live By. Tom Griffiths's Edge Bio page

AERODYNAMICS FOR COGNITION

I work on computational models of cognition, which means that I’m interested in
understanding how people do the amazing things that we do, like learning from small
amounts of data, figuring out causal relationships, identifying languages—things that
computers have traditionally found hard to do. The way that I think about motivating that
kind of research is in terms of making computers better at solving those kinds of problems.

Recently, I’ve also been thinking about a different way in which that’s a relevant enterprise.
With all of the successes of AI over the last few years, we’ve got good models of things
like images and text, but what we’re missing are good models of people. If we look at the
kinds of AI systems that are being built and the kinds of data that people want to
understand, often those data have to do with human behavior. We're trying to understand
why people do what they do and what the cognitive processes are that underlie the data we
find in the world that are a consequence of human behavior.

This enterprise is important for a couple of reasons. It gives us the tools to make sense of
these data that are becoming an increasingly important part of our lives. Also, having good
models of how people think and behave is relevant to helping AI systems better understand
what people want.

My approach is to try and understand the computational structure of the problems that
people have to solve. If we’re trying to understand how people, say, learn a new causal
relationship, how do we formalize that? How do we turn that into a math problem? That’s
the kind of thing we can imagine getting a computer to solve.

Once we figure out the structure of those problems, we can figure out a good way of
solving them. And there we draw on tools that come from AI, statistics, and machine
learning as the basis for coming up with hypotheses about how human cognition might
work. Using those insights, we can run experiments that test predictions that come out of
those models, and then we can use that as a tool for digging deeper into how human
cognition works and how people solve those kinds of problems.

There are two ways in which we’re drawing on these computational tools to make sense of
human cognition. One way is to characterize what we call inductive biases, which are the
things other than the data that lead people to reach good conclusions about the processes
that might have generated those data.

If we try to formulate a problem like, say, learning a language, the way we do this is by
getting some data—hearing what people are saying around us—and then trying to make
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sense of those data by entertaining different hypotheses about the structure of the language
and the processes that might have produced those data. We can formulate that as a kind of
statistical problem, where you take the data and try to evaluate which of these hypotheses
are right.

What’s amazing about human learning is that people are able to solve that problem
remarkably well. We’re able to learn languages, infer causal relationships, learn new words,
learn new categories from small numbers of examples where there’s not enough statistical
information to allow you to have any kind of certainty. The way that we explain that kind
of intelligence is in terms of having something that allows us to narrow down the space of
possibilities, something that allows us to make good guesses and to come up with good
answers even though we don’t have all the information that we need. Machine-learning
researchers call those things that influence our conclusions inductive biases.

One enterprise that we engage in is trying to understand the inductive biases that inform
human cognition. How is it that people are able to make these inferences? What are the
expectations that we have about how the world works—about the structure of languages,
about what words might mean, about how physical objects interact that allow us to infer
causal relationships? How is it that those things guide the inferences that we make?

One of the things that we try to do in our research is identify what those human inductive
biases are like. We’ve identified a set of experimental methods that we use for solving that
problem, using ideas that come from Bayesian statistics as a tool for characterizing what
those human inductive biases are like.

For example, one of the things that makes people good at inferring causal relationships is
that we have strong expectations about how causality works. If you take a statistics class
and you learn about how you’re supposed to detect a relationship, normally, the methods
that you’re using don’t make a lot of assumptions about the nature of the causal
relationship. All you’re looking for is some kind of pattern of dependency between two
variables. But if you tell a person to figure out if A causes B to happen, then people have a
strong expectation about what that means. They think that if A causes B, what that means is
A occurring increases the probability that B occurs by a lot. So, if A causes B, and if A
happens, then it’s really quite likely that B will happen.

Those two constraints—(1) the assumption that causes are generative, that they produce their
effects and increase their probability, and (2) that causes are near deterministic, that if
causes occur, they produce their effects with very high probability—really simplify the
problem of trying to figure out whether causal relationships are present. You don’t need as
much data to figure out whether a relationship like that exists. You can just see a few
examples and that’s enough to establish for you that, in fact, there is an underlying causal
relationship.

The other aspect of the work that we’ve been doing takes a step away from that abstract
framework of trying to understand how people reason by thinking about the raw structure of
the computational problems involved. More recently, we've been focusing on another aspect
of human cognition that is a crucial part of human intelligence, which is our ability to
program ourselves effectively.

One of the mysteries of human intelligence is that we’re able to do so much with so little.
We’re able to act in ways that are so intelligent despite the fact that we have limited
computational resources—basically just the stuff that we can carry around inside our heads.
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But we're good at coming up with strategies for solving problems that make the best use of
those limited computational resources. You can formulate that as another kind of
computational problem in itself.

If you have certain computational resources and certain costs for using them, can you come
up with the best algorithm for solving a problem, using those computational resources,
trading off the errors you might make and solving the problem with the cost of using the
resources you have or the limitations that are imposed upon those resources? That approach
gives us a different way of thinking about what constitutes rational behavior.

The classic standard of rational behavior, which is used in economics and which motivated a
lot of the human decision-making literature, focused on the idea of rationality in terms of
finding the right answer without any thought as to the computational costs that might be
involved.

This gives us a more nuanced and more realistic notion of rationality, a notion that is
relevant to any organism or machine that faces physical constraints on the resources that are
available to it. It says that you are being rational when you’re using the best algorithm to
solve the problem, taking into account both your computational limitations and the kinds of
errors that you might end up making.

This approach, which my colleague Stuart Russell calls “bounded optimality,” gives us a
new way of understanding human cognition. We take examples of things that have been held
up as evidence of irrationality, examples of things where people are solving a problem but
not doing it in the best way, and we can try and make sense of those. More importantly, it
sets up a way of asking questions about how people get to be so smart. How is it that we
find those effective strategies? That’s a problem that we call "rational metareasoning." How
should a rational agent who has limitations on their computational resources find the best
strategies for using those resources?

We're used to making decisions. The reason why this is an instance of metareasoning is that
now we're making decisions about how we're going to make decisions. My graduate student
Falk Lieder and I have been exploring how we can understand human strategy choice and
the ways in which people end up making decisions from this perspective of meta-level
rationality.

One of the consequences of thinking about this is that we gained new insight into some of
those classic human irrationalities, the kinds of things that were explored by Kahneman and
Tversky in the heuristics and biases literature. We can say that some of the things we do
seem like pretty good strategies for solving problems. 

One classic example of this is what’s called the availability heuristic, which is making an
estimate of the probability of something based on the examples that you can recall from
memory. That can result in biases because things like plane crashes, terrorist attacks, shark
attacks—the things that are very salient to us and stick out in our memory—people
overestimate their probability as a consequence. We can show mathematically that following
a strategy like that is a good way of making use of limited computational resources.

If you’re trying to evaluate the expected utility of an action and you’re only going to be
able to consider a few different possible outcomes, then a good way to minimize the
variance in your estimate—trying to get a less noisy estimate of that expected utility—is to
sample events based not just on their probability but also on their utility. Something that is
very bad is something you should over-represent when you’re trying to evaluate making a
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decision because that’s exactly the kind of thing that is going to have a big impact on your
assessment of the relevant utility.

Taking this perspective gives us a few different practical insights. One insight is about how
you can go about being more rational yourself. How do we do a better job of solving the
problems that come up in the context of our own lives? One angle on that is maybe relax a
little, don’t feel so bad about how well you’re doing at solving those problems. A lot of the
strategies that we end up using represent a good point on that tradeoff between effectively
using the resources that we have and making errors.

The other thing that comes out of this is that we can understand why we’re making those
errors, and understand that as the consequence of those limited computational resources.
That suggests that if you want to change the way people behave, then trying to teach them
the exact right way of solving the problem, if it’s too computationally costly, isn’t going to
be very effective.

Another strategy might be to say that the reason we’re having the problems we're having is
because the algorithms that we’re using are biased in the particular environment we’re in, or
because we’re not able to devote the computational resources to allow us to plan more
effectively. Maybe the place to intervene is on providing essentially those resources.

If you’ve got a human being and a computer, the computer has the computational resources,
but the human being is the one who is going to make the decision. How do you combine
those things together? One way might be to make a computer chip that you stick inside your
head that augments the onboard computational resources that you have. That’s something
which is a little further in the future than we might like, so we’ve been focusing on a
different way of doing this. Again, this is with my student, Falk Lieder. We’ve been looking
at how you can use the computer to change the environment that the human being is in so
that that human being ends up making better decisions.

We already do this to some extent. If you’ve ever used the strategy of gamification, where
you’re using an app or something that gives you points for completing tasks, or if you make
a to-do list and you get satisfaction from checking things off, what you’re doing is
essentially using this external device as a mechanism for changing the environment that
you’re in.

We can go further than that. If you’ve got a computer that has information about the
structure of the problem that you’re solving and can communicate that information back to
you through a mechanism like gamification by giving you rewards, then we can build a
system that will help guide people to making more effective decisions by modifying their
local reward function.

If you’ve got a decision problem and you're able to use a computer to solve it, then we have
worked out the optimal gamification scheme, the right way of transferring information the
computer has about what the best actions are into information that you can provide to
people in the form of points or modifying the rewards that they get for doing something. So
people end up solving the problem as well as we might hope.

An example of this is if you have a task that you’re trying to complete. By getting all the
way through the task, you get some reward at the end, but each of the steps in that task is
something painful or frustrating for you, something like writing a book or another long-term
project with these local costs. One way that you can make it easier to get to that point is by
taking that reward you get at the end and spreading it back through time so that you’re
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getting some incremental reward for completing each of those sub-tasks. That’s a simple
example because it’s relatively straightforward to figure out how you should be rewarding
yourself along the way for achieving smaller goals. But we’ve shown that the strategy is
something that can be used for relatively complex sequential decision-making problems.

Another example is if people are only able to plan a few steps into the future. You have a
computer that’s solving a problem in a way that allows it to plan arbitrarily firing into the
computer. We have a scheme for taking those solutions that the computer gets and putting
them back into the problem as rewards along the way that allow it to correct for the fact
that, even if the human being is only planning a few steps into the future, that human being
wants to end up achieving the ideal outcome.

The most challenging problems that human beings solve, both from a human perspective and
from a computer perspective, are the problems that involve other people. These are things
like trying to figure out what another person’s behavior means. Are they acting in a way
because they like you or they don’t like you? Are they doing that because they don’t
remember you? Are they making a decision because they prefer one thing over another?
Trying to reason, from the actions people take to the mental states that they have, and trying
to work out what the consequences of those mental states are is something that can be
taxing for humans, but it's something we do automatically when we're interacting with
another person. A lot of what you’re doing is trying to reason about the mental states that
they have. It’s also something that is key to being able to operate in a society.

As you walk around and interact with other human beings, you are making inferences about
the preferences of those human beings and, normally, doing your best to accommodate those
preferences. The preferences can be as small as someone wanting to go in a particular
direction, so you’re just making sure that you’re not blocking their way. They can also be as
important as they prefer to stay alive, so you’re doing your best not to interfere with that
aspiration. Understanding how people make those kinds of inferences is something that is
important for getting insight into potentially how to help people navigate some of those
things in their own lives; it’s also critical to being able to make computers that interact with
humans in ways that are beneficial for both.

One of the interesting things about that problem is that when you formulate it as a statistical
problem, it’s a problem where you’re getting data. You’re seeing the way in which the
person is behaving and you’re forming hypotheses about what they want, what they prefer,
and why they’re doing the things that they’re doing. In order to make that mapping from
hypotheses to data and the reverse inference from data back to hypotheses, you need to have
what a statistician would call a forward model or a generative model. That model tells you
that if somebody believes this, then they will act in this way. If they want this, then they
will act in this way. If this is their goal, then they will act in this way. We need to be able
to make predictions about the data that we get based on the hypotheses that we’re
entertaining to reason backwards from the data back to the
hypotheses.                                 

That sets up this problem of trying to understand human behavior as a rational process or a
boundedly optimal process of people trying to achieve their goals through their actions as a
key ingredient of being able to work backwards and figure out what people are desiring or
trying to do.

There are two interesting perspectives that this provides when we think about both cognitive
development in children and social cultural development, where societies hopefully get better



at solving different kinds of problems. When we start to think about what this implies about
children, the first principle is that we should try to interpret children's behavior as the
consequence of some kind of rational process. This may seem like a big ask, insofar as
children are notoriously irrational in the sense of being highly variable—running around not
doing things you want them to do, and so on. Some of that is because they have a different
perspective on the world; they're operating from different information that leads them to act
in different ways. But that kind of variability is exactly what we might expect out of an
organism that is designed to solve problems rationally over the course of its entire lifespan.

One of the ideas that shows up in machine-learning research is the idea of the explore-
exploit tradeoff, where you are trying to solve a problem in which you're going to have the
same set of options repeatedly. For example, you've got a set of places where you could go
for dinner, say, if you're living in a city. You're going to have the same set of options
tomorrow. The explore-exploit tradeoff comes up because, when you're deciding to go out to
dinner, you could either go to a new restaurant or you could go to a restaurant that you
already know is good.

When you're trying to make a decision in that situation, you have to tradeoff these two
things: Do I gather more information about the world, which might be useful for me when
making a decision about restaurants in the future, and might ultimately maximize my utility
in terms of dining at these restaurants? Or do I exploit the knowledge that I have in order to
have the best dinner that I already know I could have tonight?

What machine-learning algorithms do when they're solving this problem is recognize that the
thing you should be doing is exploring more when you first arrive in the city and exploiting
more the longer you are in the city. The value of that new information decreases over time.
You're less likely to find a place that is better than the places you've seen so far, and the
number of opportunities that you're going to have to exploit that knowledge is decreasing.

That tradeoff also appears in human decision making over our lifespan. If we're going to
face similar kinds of decisions—we have the same kinds of objects in our environment,
which is something that is going to be relatively constant throughout our life—then we want
to weight our exploring to the first part of our lifespan, and weight our exploiting to the
second part of it.

My colleague Alison Gopnik, who has been pursuing this, has a hypothesis about cognitive
development. When we look at children, that variability and randomness that we see is
exactly a rational response to the structure of the problems they're trying to solve. If they're
trying to figure out what are the things in their environment that they will most enjoy, then
putting everything in their mouth is a pretty good strategy in terms of maximizing their
exploration.

Working with Alison and our students, we've done a few studies that have looked at how
this picture of human learning as solving a statistical problem changes as we look at
individuals that are at different points in that developmental process. When you think about
solving inductive problems and characterizing inductive biases, thinking about them in
statistical terms says that there's a principle of conservation of learning, that you can only
be good at learning certain kinds of things.

If learning well is a matter of having biases that point you towards particular solutions, then
being pointed towards one solution is going to point you away from another one. If as
adults we're converging on a more tightly wound model of how the world works, that's the



thing that gives us the maximum inductive leverage in the world that we're operating in,
then what we expect to see is that children will be much more flexible as learners. Children
are not going to be as strongly committed to the kinds of hypotheses that we are. That's
basically what we see across a few different kinds of tasks.

One example in the context of causal learning is that adults have an expectation that if
you've got two things that could potentially cause something to happen, normally, those two
causes operate independently. So, if I put some things on my blicket machine, and these
things make the machine light up and play music, the assumption that adults will make by
default is that each of those things have the capacity to make the machine light up and play
music; those things were acting independently to produce that effect. That's a good
assumption in the world that we live in.

If you flip a light switch, those switches are things that directly affect the light. There's a
relative amount of independence of causes in the world we live in. It turns out that if you
have a causal system that doesn't work like that, one where you take two objects and put
them on the machine in order for it to light up and play music, then kids can figure that out
quicker than adults do. That's something which violates the inductive biases of adults, but
kids haven't acquired those same kinds of biases. As a consequence, they're faster learners.

That's consistent as well with this explore-exploit framing. As they're starting out, kids have
a much more diffuse expectation about how the world works, and that gives them more
flexibility to discover different kinds of relationships that could exist.

~ ~ ~ ~

At Berkeley, I'm affiliated with psychology, cognitive science, neuroscience, and computer
science in one way or another. Those are all audiences that this work connects to. Most of
what we do is write scientific papers that introduce those ideas to those audiences. We
grapple with these deep questions about how human cognition works, how we understand
the things people are doing, and how we can make people better at solving those problems.

We've recently started to reach out to a broader audience. This is a consequence of the fact
that we're at a moment where there's a unique opportunity for psychology and cognitive
science to have a broader impact. In the technology industries right now, there's a lot of data
on human behavior. When you go to a website, often the company that has put out that
website is collecting information about what you look at and what you click on. They're
trying to figure out information about you that they can use to show you the right ads and
make recommendations of the right products. They use information about your behavior to
make inferences about your preferences and desires, and then figure out how they can best
satisfy those (and take some of your dollars in the process).

How do I make recommendations to somebody? How do I identify people who other people
will want to be friends with? How do I figure out, based on their actions, what people are
interested in? How do I figure out what kinds of things they will apply a tag to, what kinds
of images they'll label in a particular way? These are all problems that are fundamentally
psychological problems. But the way that they're being tackled is largely as computer-
science problems.

There's an opportunity that goes in both directions, in the direction from academia to
industry and from industry to academia. The reason I say that is because most of these kinds
of data are being used in a relatively superficial way. To give an analogy: The current state
of data science is in the state that psychology was in during the first half of the 20th



century.

In the first half of the 20th century, it was disreputable to try to study how the mind works
because minds were things that you never saw or touched or intervened on. What you could
see was behavior and the environment that induces that behavior, so the behaviorist
psychologists said, "Let's get rid of the mind. Let's just focus on these mappings from
environment to behavior." That's where a lot of behavioral data science is. If I show you
this, then you click on this. If you've seen these webpages, then you're likely to go to this
webpage. It's a very behaviorist conception of what underlies the way that people are acting.

In the 1950s, a new way of thinking about psychology and cognitive science was introduced,
which was to talk about how minds work. The thing that made that possible was
mathematics, having good formal mathematical theories that could be used to describe how
you could have an intervening variable between the environment and behavior. What
cognitive scientists and psychologists are experts at is figuring out the structure of those
intervening variables, putting the right things between environments and behavior. I see an
opportunity there for making data science richer, and to engage more with the models of
cognition that would hopefully result in more effective predictive models as well.

On the other side, going from industry to academia, a lot of the data that's being collected
by these companies is being kept as proprietary data; it's not necessarily used in ways that
will give us the kinds of scientific insights that it might support.

For example, I have two daughters, and when my first daughter was born, my wife and I
started using an app to keep track of her sleep. After doing this for a while, I realized that
the company that had that app had more data on infant sleep than every study that had ever
been run by psychologists. There's a huge opportunity there to understand things about
development, but more broadly how people learn and think by using these sources of data.

Psychologists don't normally think about using data like this. The way that a psychologist
answers a question is by running an experiment, maybe with some undergraduates, maybe
online, and using the results of that experiment to tease out a particular hypothesis. The
analogy I make is that this is much more like astronomy. You don't get to intervene; you
only get to observe. The observations you get are very large scale and noisy. But that
doesn't mean there's no scientific value in those observations. It sets up a new set of
challenges for how we pursue psychology in the 21st century, which are about how we make
the most of these rich but complicated datasets that characterize the nature of human
behavior.

We started a few enterprises that try to engage with that. My postdoc Alex Paxton and I
have been working on a website called dataonthemind.org, which collects a huge amount of
behavioral datasets that have been publicly released. Those publicly released datasets have
been tagged with different aspects of cognition. If you're a psychologist and you want to
understand how attention works, you can go to the website, click on "attention," and it
shows you a whole list of datasets that we think tell you something about human attention.
Then you have to figure out how to use this to answer research questions.

That bridges what we call the "imagination gap," which is the gap between wanting to solve
a problem and being able to imagine how to use these different sources of data to solve that
problem. The second gap we call the "knowledge gap," which explores how to get the skills
to be able to do that. We also have been putting together video tutorials about how to work
with large datasets.



The third gap is what we call the "culture gap," which is just helping people to recognize
that this is a good way of doing psychological research, and on the other side, helping
people in industry to recognize that there's value in working with academic psychologists
and cognitive scientists to try to solve these kinds of problems. That's where we are now,
starting to reach out to companies and say, "The kinds of data that you have would be
scientifically useful, and we also think that the kinds of science that we do can be useful
from a business perspective."

Rather than trying to do this in a way where we're focused on one particular company, the
advantage of being in academia is that we can work with many different companies. We
don't have to commit to having one kind of data. Part of my motivation in doing this is that
I have also worked in machine-learning research. Machine learning has gone through this
rapid transition over the last decade. Maybe ten years ago, most people who were doing
machine-learning research were in academia, with some presence in industry. Over the last
ten years, machine learning has become more and more important for companies. As a
consequence, there's been this big shift of machine-learning researchers from academia into
industry. We're now at the point where there are certain kinds of problems where, if you
want to work on them, you pretty much need to be in industry to do so because that's where
the datasets and the computational resources are.

Ten years into the future, when I'm thinking about what would be the next thing that might
be like that, I think of the social sciences, including psychology and cognitive science. At
the moment, most research being done in those disciplines is being done in academia, but
the kinds of data that companies have are becoming increasingly important to being able to
answer certain kinds of questions.

For me, there's a goal of trying to preempt getting into a situation where the only way to
answer those questions is by making a commitment to work at a particular company, by
trying to establish some norms about how those kinds of data are shared, used, and made
available to academic researchers. Dataonthemind.org is a mechanism that hopefully will be
a way of doing that.

~ ~ ~ ~

I grew up in Australia. I was born in London, and my parents moved to Australia when I
was eight years old. I did my undergraduate degree at the University of Western Australia,
in Perth, which has a reputation as being the most isolated capital city on earth. It's a long
way from anything else, but it's also a great place to grow up. In Australia, in the last year
of high school, you have to make a decision about what you want to study at university. It
was 1994, I was sixteen years old, and I had no idea what I wanted to do. I knew that I
liked math, but I certainly didn't want to make a commitment to doing that for the rest of
my life. I said, "Okay, I'll study the things that we don't know anything about—philosophy,
psychology, anthropology." That was what I went to university to do.

A couple of years into that degree, I was reading a philosophy book by Paul Churchland
called Matter and Consciousness. Right at the back of that book, there's this chapter on
neural network models, and I was amazed. It was like, okay, this is fantastic: You can use
mathematics to describe things like how brains and minds work. I decided right there that
that's what I wanted to do. I spent the summer reading all sorts of books about neural
networks and mathematical models of cognition.

On the first day of the semester, I cornered the guy who I'd identified at the university as



working on that topic convinced him to let me into his lab. While I was working there, I
got the chance to get involved in research and studying these kinds of things. I knew that
there was a lot that I wanted to learn about computer science, and statistics, and these other
disciplines.

Then when I applied to graduate school, I went to Stanford University, where I worked with
Josh Tenenbaum. In the process of doing my PhD, I had the chance to do a Master's degree
in statistics, which was statistics, computer science, and machine learning. That gave me the
tools to be able to do the kind of research that I do today. I worked with Josh at Stanford
and MIT. Then I went to Brown University, where I started to teach, and I met some of the
colleagues who continue to be good friends and collaborators today.

~ ~ ~ ~

The real important ideas here are that, first of all, we can learn things that are relevant to
making computers better at solving problems and smarter by studying human cognition.
That's a view that has oscillated in the AI community in terms of how much people believe
that or not. In the early days of AI, it was closely tied to cognitive science. In the 1950s,
the very first AI paper was also the first computational models of cognition paper. Allen
Newell and Herb Simon did this work on the Logic Theorist, which was a theorem-proving
system, but it was inspired by how humans solve that kind of problem. Those two
disciplines were tied together from the start.

It's very clear that in order to make progress in understanding some of the most challenging
and important things about intelligence, studying the best example we have of an intelligent
system is a way to do that. Often, people who argue against that make the analogy that if
we were trying to understand how to build jet airplanes, then starting with birds is not
necessarily a good way to do that.

That analogy is pretty telling. The thing that's critical to both making jet airplanes work and
making birds fly is the structure of the underlying problem that they're solving. That
problem is keeping an object airborne, and the structure of that problem is constrained by
aerodynamics. By studying how birds fly and the structure of their wings, you can learn
something important about aerodynamics. And what you learn about aerodynamics is equally
relevant to then being able to make jet engines.

The kind of work that I do is focused on trying to identify the equivalent of aerodynamics
for cognition. What are the real abstract mathematical principles that constrain intelligence?
What can we learn about those principles by studying human beings?

Over the last few years, there have been significant advances in AI, in particular, in solving
certain kinds of problems. There are problems that involve doing things with images, text,
and problems that involve learning to play games or other kinds of reinforcement-learning
problems, where you have an agent who's just getting a reward for pursuing different
strategies, which also translates to things like robotics. In each of those domains, there have
been huge advances as a consequence of using neural network models that are very large,
that are trained on very large amounts of data that take advantage of large amounts of
computation.

Where I'd say the challenge lies is in seeing to what extent that same kind of modeling
perspective can help us solve problems that require reasoning, not about images, text, or
reward, but about things like human behavior. One of the ways in which human beings still
outperform computers is in being able to solve problems of reasoning about why you did the



thing you did, what you're going to do next, what the underlying reasons were behind things
that you did.

For those kinds of problems, it seems like the symbolic nature of being able to think about
the thoughts that another person is having seems like an intrinsic aspect of it. It also
requires having a way of reasoning about this link between goals and behavior, and that's
something which is traditionally filled by a model of rational action, that you wanted to do
a particular thing and that's the reason why you did it. That's a rational consequence of the
desires that you had leading you to act in a particular way.

Having an understanding of what the nature and limits are of human rationality is critical to
being able to make computers reason about those kinds of things. And making computers
reason about those kinds of things is critical to having computers interact with humans in
ways that are mutually beneficial, that are engaging with some of these concerns people
have about things like AI safety.

It's more important than ever to understand what makes people behave in the ways that they
do and to be able to describe that in mathematical terms because it gives us the tools for
building that bridge between humans and machines.

There's a new set of challenges raised by machines becoming more intelligent. Some of
those challenges—you could think about these as psychological challenges—involve how to
interact with those intelligent machines in a way that's effective, and understand how it
changes the way we conceive of ourselves. Those are things that I've been thinking about
increasingly. They're things that I'm not particularly worried about. We as human beings are
used to being surrounded by intelligent systems whose thoughts are opaque to us. It's just
that normally those intelligent systems are human beings.

One of the things we need to be able to do is establish enough context and
comprehensibility in the ways that machines act. Human beings are able to use the resources
that we're used to using for reasoning about other people as mechanisms for reasoning about
the actions that those intelligent systems are going to take. One of the challenges there is
that if it's possible to make machines that are more intelligent than people, you start to run
into these issues of it being hard for us to be able to reason about the motives that underlie
their behavior.

You can already see this in restricted domains; for example, in the AlphaGo system that
DeepMind had for playing Go, which is something where the moves that it makes are things
that can seem relatively opaque to a human being because those moves are motivated by,
many steps into the future, resulting in a slightly increased probability of winning the game.
That's a form of motivation that outstrips the cognitive capacities that we have.

This is a moment where we are starting to recognize that we're going to need to interact
with systems that, at least in restricted domains, are going to be smarter than us. Thinking
about how to design those interfaces between humans and machines in ways that make it
possible for us to interact with those systems in a way that allows us to function effectively
is an important research challenge, and a significant social challenge.
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